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Abstract: This paper provides an integrated coaching framework for the age of AI. The 
literature indicates that trust and skill deficiencies limit AI adoption. We introduce a 
coaching model that focuses on the key dimensions of Machine Autonomy, Trust, and AI 
Competencies, including an equation that helps coaches track performance. The 
significance of this model is that it provides coaches with a framework to engage leaders 
to better plan, manage, and sustain AI adoption. 
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Introduction 
 

In the age of AI, executives will be required to lead machines, lead people that build machines, 
and lead organizations that adopt AI. The purpose of this paper is to introduce a model that coaches 
can use to drive AI adoption within organizations. The research has focused on the role that 
Machine Autonomy, Trust, and AI Competencies have on AI adoption. This includes analyzing 
factors that encourage equilibrium between these three dimensions, conditions that create 
divergence, and the implications for coaching. 
 
  The Machine Leadership Model provides a framework for coaches to optimize AI adoption 
by focusing on the balance between Machine Autonomy, Trust, and AI Competencies. Research 
indicates that many AI use cases have achieved near linear computational complexity for baseline 
operations, traditionally expressed as O(n). This breakthrough in AI engineering has allowed 
highly complex models to scale in proportion to the size of their input. However, our findings 
suggests that AI models are influenced by the relationship between Machine Autonomy, Trust, 
and AI Competencies. In situations where (A=T=C), there is no moderating impact on O(n). 
However, any deviations from this creates a positive moderating balance. This results in higher AI 
adoption costs that increase based on the degree of imbalance. This level of technical complexity 
is important to coaching due to the unique challenges that leaders face integrating machines with 
the human workforce such as Responsible AI, data privacy, and employee skill programs.  
 
  This paper will provide a review of existing literature, followed by a description of the 
Machine Leadership Model, an introduction of the moderating equation, and coaching strategies 
for improving AI adoption. The significance of this model is that coaches can help AI engineers 
manage AI adoption in a manner that drives (A=T=C). This approach optimizes organizational 
performance, further integrates the hybrid workforce, and lowers costs.  
 
 

Methodology 
 
To develop the Machine Leadership Model, the researchers conducted a mixed methods 
exploratory design. The first step consisted of a literature review that evaluated the theories and 
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best practices impacting AI adoption. This included analyzing the role that Human Autonomy, 
Trust, and AI competencies have on AI leadership. Furthermore, the team examined existing 
coaching models and their adaptations for AI leadership.  

 
 The researchers completed stakeholder interviews with fifteen AI engineers and corporate 
leaders. Separately, the team administered a 75-question survey to twenty participants. The survey 
was designed as a pilot instrument. The team investigated existing assessments and AI 
performance metrics such as Hogan’s inventories, Korn Ferry’s Leadership Architecture, the BBH 
Benchmark, and AGIEval. The researchers determined that unique questions were needed to 
directly address the factors influencing AI adoption. Survey data was collected from a variety of 
sources including: one AI Researcher, eleven AI Engineers, and eight Corporate leaders.  
Respondents were asked to provide their job role, industry experience, and geographic location. 
An ipsative ‘forced choice’ method was used for the survey questions. Furthermore, the 
researchers utilized the literature to identify a method for measuring baseline AI model 
complexity. From this, the team developed a moderating equation that accounts for the impact that 
Machine Autonomy, Trust, and AI Competencies have on AI adoption. 

 
 Regarding data analysis, the researchers mapped each respondent’s Autonomy, Trust, and 
AI Competency level using their ipsative scoring from the survey. Separately, two coders 
evaluated the stakeholder interviews. The team determined that a fixed codebook and Kappa inter-
coder reliability calculation was unsuitable for this study. Instead, the focus was on extensive 
collaboration. A comparative analysis was used to finalize key themes.  
 
 The moderating equation utilized a baseline complexity assumption, expressed as O(n) for 
a standard feedforward neural network. The decision to use this neural network was to provide a 
simple approach for future studies. The calculation assumed an input layer with 4 nodes, a hidden 
layer with 8 nodes, a second hidden layer with 6 nodes, and an output layer with 2 nodes. The total 
operations for this baseline model were defined as: 40 (Layer 1) + 54 (Layer 2) + 14 Layer (3) = 
108. The 108 represents the FLOPs (Floating-point operations) for a single forward pass, which 
Meng et al. (2024) describe as a standard measure of AI computational complexity. The 
researchers anchored the moderating equation against O(n) to ensure that coaching strategies were 
aligned to AI industry practices for determining computational costs. 
 
 The moderating equation was then applied to the survey scores. This resulted in an AI 
adoption penalty based on the degree of imbalance, expressed as M(A, T, C) > 0. The calculated 
penalty is summarized in Figure 2. Finally, the adjusted scores were applied to a new coaching 
model specifically designed to optimize AI adoption. Existing coaching models such as GROW, 
OSCAR, and FUEL were reviewed for alignment. However, the researchers determined that a new 
framework was needed to specifically achieve (A=T=C). 

 
  

Theoretical Framework/Literature Review 
 
The researchers focused on five themes to evaluate the factors influencing AI adoption. First, the 
team examined existing coaching models to identify best practices and understand how traditional 
frameworks have been adapted to AI. Then, a detailed analysis was conducted concerning the role 



 

Copyright © 2025 David Swanagon and Stephen McIntosh 3 

of Autonomy, Trust, and AI Competencies in driving organizational performance. Finally, the  
team investigated the process used to calculate computational complexity. Combined, the literature 
revealed that Autonomy, Trust, and AI Competencies are critical for AI adoption. Furthermore, 
that there is a standard method that companies use to calculate computational complexity, which 
can be applied to measure AI adoption. Lastly, that the interdisciplinary leadership of coaches can 
serve as a bridge between technical and non-technical teams seeking to address AI challenges. 
 
Coaching Models Adapted for AI Leadership 
 

The field of leadership coaching has well established models such as GROW, FUEL, and 
OSCAR for addressing employee development and team performance. Passmore et al. (2024) 
argued that coaches should adapt these models by becoming technology literate and embracing 
digital tools. This includes leveraging data analytics to assist with the Reality, Understand, and 
Situation stages of GROW, FUEL, and OSCAR, respectively. Likewise, utilizing AI tools such as 
Chatbots and digital platforms to scale services. AI tools can also assist with the development of 
action plans and accountability metrics. The researchers argue that AI cannot replace the coaching 
process. Instead, it should augment the models through robust data insights, automation, and 
process efficiencies. This “Human in the Loop” process requires coaches to develop new 
competencies that strengthen data literacy and generative AI knowledge.   
 
  A review of existing coaching models identified several themes that were relevant for AI. 
The seminal work by Sir John Whitmore (2002) provided the GROW framework. This approach 
emphasizes the need for robust goal setting, understanding reality, brainstorming options, and 
building action plans. This approach directly applies to AI Engineering tasks such as model 
selection, MLOps, and data privacy. Zenger and Stinnett (2010) added to this by introducing the 
FUEL model. This framework focuses on conducting quality coaching conversations. This is done 
by framing the purpose of the conversation, understanding the situational context, exploring 
potential solutions, and laying out action plans. This approach helps AI Engineers address domain 
specific challenges impacting models tied to Healthcare, Finance, Energy, and so forth.  
 
  The OSCAR model developed by Gilbert and Whittleworth (2009) compliments these 
concepts by helping leaders transition from their current state to a desired outcome. The model 
follows a structured process that includes identifying a future state, analyzing the situation, 
exploring choices, creating action plans, and reviewing results. This approach is useful in building 
robust technology roadmaps that help organizations integrate increasingly complex machines. 
  
Methods for Calculating Computational Complexity 
 
  NIPS (2014) provided a comprehensive review of the core components that determine 
computational complexity for neural networks. This includes forward and backward passes and 
the reason these models follow a linear computational cost. Cormen et. al (2009) identified the 
expression O(n) as a way of showing the efficiency and scalability of an algorithm. The notation 
indicates that runtime and memory usage grows as the input size (n) increases. The literature 
indicates that O(n) is an effective way of showing the linear change in computational complexity 
as AI models gather more data, perform additional calculations, and integrate with other platforms. 
This method was used to support the Machine Leadership Model by establishing a baseline 
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computational cost for AI tools that is focused on model design. From this baseline, the AI tool is 
moderated by the Machine Autonomy, Trust, and AI Competencies within an organization.  
 
Human Autonomy and Meaning in the Workplace:  
 
 According to Deci and Ryan (2000), Self-Determination Theory stipulates that autonomy 
and relatedness are critical factors in driving intrinsic motivation. This is important because 
employees that experience a sense of autonomy in their work are more likely to be committed 
despite experiencing external pressures. This was supported by Hackman and Oldham’s (1976) 
Job Characteristics Model, which highlighted that jobs high in autonomy and meaning produce 
more effective work outcomes. Wrzesniewski et al. (2003) researched the role that autonomy has 
on developing a sense of meaning for employees and its positive effects on satisfaction. Separately, 
Pink (2009) noted that creative work which involves non-routine tasks requires a high degree of 
autonomy and purpose for employees to perform at high levels. These studies support the role of 
human autonomy as a key dimension in driving AI adoption using the Machine Leadership Model. 
 
The Importance of Trust 
 

Dirks (2000) noted that trust is a fundamental component of leadership effectiveness. 
Teams that trust their leader’s experience, temperament, and decision-making are more likely to 
perform at peak levels. This is supported by Simons (2002), which emphasizes the importance of 
leaders behaving in a consistent, predictable, and authentic manner. Mayer et al. (1995) noted the 
importance of character traits such as integrity, benevolence, and ability on cultivating trust. These 
concepts were further segmented by McAllister (1995) who defined classes of trust such as affect-
based and cognition-based. The former focuses on the importance of building emotional bonds, 
while the latter is based on the leader’s perceived competency level. The research also emphasized 
that affect and cognition-based trust must be balanced with cooperation. Zaheer et al. (1998) 
highlighted that teams which build high degrees of trust are more effective at engaging in 
interpersonal communication and cross-collaboration.  

 The literature indicated that Trust is an essential element of the Machine Leadership Model 
due to its influence on AI adoption, especially when balanced with autonomy. The researchers 
integrated these studies with the stakeholder interviews and survey results to establish a definition 
of trust that applies to the Machine Leadership Model. In terms of AI adoption, the team defines 
trust as the belief in the ability and willingness of a human or machine to meet your expectations.  

Building AI Skills in Organizations 
 
  Manyika et al. (2017) highlighted the on-going and persistent AI skills gap across key 
domains such as machine learning, robotics, ethical AI, and data science. The lack of critical skills 
has fundamentally impacted the degree of AI adoption across industries. Van Laar et al. (2017) 
extended this concept by examining the complexity associated with defining the required skills for 
AI professionals. More so than most industries, AI requires engineers to have strong technical 
skills, problem solving, and interpersonal traits. Purdy and Daugherty (2017) added to this by 
noting the importance of integrating AI skills across business functions. This means technical and 
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non-technical professionals must have a fundamental understanding of AI technologies to lead a 
workforce comprised of AI agents and humans. 
 
  The literature emphasized the importance of learning agility. Wilson et al. (2017) examined 
the pace of AI innovation and noted the importance of upskilling and continuous learning on 
organizational performance. Companies need to continually reinvest in learning programs to 
respond to disruption and align new technologies with their enterprise strategy.  
 
  These studies indicated the importance of coaches in supporting the development of AI 
Competencies within an organization to ensure that Machine Autonomy is balanced with Trust. 
Furthermore, the interdisciplinary leadership of coaches can serve as a bridge between technical 
and non-technical teams seeking to address challenges with model design, utilization, and 
employee skills. This applies to the Machine Leadership Model as the decisions impacting 
Machine Autonomy, Trust, and AI Competencies involve multiple cross-functional stakeholders.  
 
 

Summary of Major Findings 
 
The research produced two themes. The first theme focused on computational complexity and 
moderation, while the second theme addressed the role of coaching in AI adoption. The first theme 
stipulates that AI adoption is influenced by the baseline complexity of the model, expressed as 
O(n), which is moderated by the interaction between Machine Autonomy, Trust, and AI 
Competencies. The second theme suggests that coaching can play a significant role in balancing 
the moderating effect of Machine Autonomy, Trust, and AI Competencies, which will help 
organizations lower the cost of AI adoption.  
 
  The AI Innovation Frontier is the equilibrium where Machine Autonomy, Trust, and AI 
Competencies intersect. This is the place where AI tools are utilized in the most efficient manner. 
The frontier operates at various stages of model complexity. This allows organizations to utilize a 
standard framework for comparing novel inventions to large scale breakthroughs. The frontier 
seeks a positive correlation between Machine Autonomy and Trust, which means as autonomy 
increases, trust also increases at a rate moderated by AI Competencies. 
  
  The moderating function for O(n), which evaluates the equilibrium between Machine 
Autonomy, Trust, and AI Competencies is listed below. 
 

AI Adoption = Oinfluenced(n) = (1+ M(A,T,C)) * O(n) 
Moderating Function = M(A,T,C) = k * ((A-C)2 + (T-C)2 +(A-T)2) 

 
  The point where Machine Autonomy, Trust, and AI Competencies intersect is referred to 
as The AI Innovation Frontier. The reason is because there is no moderating influence over the 
general performance of an AI tool, expressed as O(n). The moderating equation indicates that as 
AI tools scale, their adoption rate is influenced by the interaction between these variables. In 
situations where the moderating variables are at equilibrium, the formula is (A=T=C). The 
moderator M quantifies the degree of deviation from this state of equilibrium.  
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Figure 1 
 
The Machine Leadership Model 
 

 
   
 

Deviations from the state of equilibrium create a positive moderating balance, expressed 
as M(A,T,C) > 0. This scenario incorporates a positive scaling constant k, alongside the sum of 
squared differences between the three elements. This is reflected using the following formula: 
M(A,T,C) = k * ((A-C)2 + (T-C) 2 + (A-T) 2). The k is a scaling constant that determines the degree 
of sensitivity towards O(n) that results from deviations to the equilibrium. The first term (A-C)2 

measures the difference between Machine Autonomy and AI Competencies. The second term (T-
C)2 measures the difference between Trust and AI Competencies. The third term (A-T)2 measures 
the difference between Machine Autonomy and Trust.    
 

Proceeding to AI adoption, the formula Oinfluenced(n) = (1+ M(A,T,C)) * O(n) can be 
analyzed as O(n) represents the standard computational complexity of an AI model and stipulates 
the linear growth of a model as the input size increases. Cormen et. al (2009) identified this as a 
common measure showing the processing time and memory that change in proportion to the size 
of the inputs. When AI tools are out of balance, the baseline computational complexity O(n) is 
moderated by a number greater than 0, expressed as M(A,T,C) > 0. This results in a penalty that 
increases proportionally based on the degree of imbalance.  
 

The research team utilized a baseline complexity calculation for a standard feedforward 
neural network, expressed as O(n). The total operations for this baseline model were defined as: 
40 (Layer 1) + 54 (Layer 2) + 14 Layer (3) = 108 FLOPs. After this, respondent survey results 
were added to the moderating equation to determine if a computational penalty was needed. The 
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results are listed in Figure 2. The findings indicate that organizations with these model scores 
would incur a 200% penalty on their AI adoption programs. 
  
Figure 2 
 
AI Adoption Penalty - Summary of Respondent Survey Scores (Respondents = 20) 
 

Baseline Autonomy Trust Competencies M(A,T,C) Penalty 
108 FLOPs 3 2 2 2 324 FLOPs 

 
Using the survey respondent pool, the average score for Machine Autonomy was 3, Trust 

2, and AI Competencies 2. The baseline complexity = 108 FLOPs. The new adjusted FLOPs 
incorporating this lack of equilibrium is 324, which represents a 200% increase in complexity. 
These are AI adoption costs that are incremental to the model’s engineering design, which 
organizations incur to build trust and employee skills in new AI tools. For example, the penalty 
may require organizations to slow down deployment, incur higher training costs, or add 
Responsible AI monitoring platforms to achieve equilibrium.  
  
 M(3, 2, 1) = k * ((3-2)2 + (2-2)2 + (3-2)2) = 2 
 Oinfluenced(n) = (1 + 2) * 108 = 324 FLOPs (+200%) 

 
The findings suggest that coaches can directly impact the moderating function. For 

example, in situations where an AI tool has low Trust and high Autonomy (T < A), organizations 
may need to engage in significant monitoring to ensure issues such as Responsible AI and data 
privacy are mitigated. Coaching can reduce these issues by working with engineers and corporate 
stakeholders to improve organization trust. This could be achieved by using the Machine 
Leadership Model and coaching tactics listed in this paper.  

 
Comparatively, when Trust is high and AI Competencies are low (T > C), additional 

protocols may be needed to manage data ingestion errors, input validation, and cyber security 
breaches. In this situation, engineering teams would need to ensure that employees developed 
baseline skills in threat prevention. An example would be a phishing email program. Coaches 
could support this program by developing action plans for teams and individual leaders to ensure 
that trust and skill programs were implemented. The AI adoption formula could be used to check 
if the moderating variables have reached equilibrium, and what additional steps were needed. 
 
Machine Leadership Coaching Model 
 
  Current models such as GROW, OSCAR, and FUEL focus on coaching conversations that 
emphasize how the leaders focus on attaining goals, motivate and lead their teams, and navigate 
the complexity of change. These models are effective in the context of leaders leading people, but 
leading an AI machine adds additional complexity. To effectively coach AI leaders, a new 
coaching model is required that accounts for the Machine Autonomy and purpose of AI tools. 
 
  AI adoption is highly dependent upon the Trust created between the leader and the hybrid 
workforce. The research team developed an applied definition of Trust stipulating, “Trust is the 
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belief in the ability and willingness of a human or machine to meet your expectations.” In the 
hybrid workforce context, we can look at the variables of “ability” and “willingness” as being 
applicable to both humans and machines.  
 
  The term “ability” is defined as the breadth of responsibility given to successfully manage 
a use case at both the scope and scale expected. According to Deloitte (2024), autonomy is the 
power to act and make decisions independently. This concept can be extended to agentic AI. For 
these platforms, the goals are set by humans, but the agents determine how to execute them. Thus, 
each AI tool has a level of autonomy, which is described in Figure 1 by six levels. Levels three 
through six are coaching priorities because they indicate the AI tool is actively participating in the 
decision-making process from creating data driven criteria to being fully autonomous.  
 
  Figure 3 illustrates how Scope (SP) and Scale (SL) interact to guide the decision on establishing 
the right autonomy level given to the AI Engineer or Machine. The combination of the two is the 
Breadth of Responsibility. When the Level of Autonomy is decided, then this coaching variable 
becomes the Degrees of Freedom that determines Ability. The ability of the engineer or machine 
to accomplish an increased scope or higher scale of work complexity leads to increased risk.  
 
  Therefore, the Breadth of Responsibility accounts for the progress through significant 
expansions in Scope as moving from SP1 to SP2 and SP3, while significant Scale increases are 
noted as SL1, SL2, and SL3. The Breadth of Responsibility can iterate across many levels until 
the underlying technology changes to the point a new Degrees of Freedom chart should be created.  
 
Figure 3 
 
Degrees of Freedom Chart - Levels of Autonomy by Breadth of Responsibility 
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  Coaches working with AI Leaders will first ask the leaders to complete the Machine 
Leadership Model shown in Figure 1, while using the moderating equation in Figure 2 to determine 
the current AI adoption trends. Once an initial score is established, a discussion around the Breadth 
of Responsibility of team members (both humans and machines) and at what level of autonomy 
and skillset should be targeted. The objective being to achieve (A=T=C). 
 
  As the pace of AI innovation continues to scale, two more levels of autonomy will be 
added: Level 7 for Artificial General Intelligence (AGI) and Level 8 for Artificial Super 
Intelligence (ASI). These autonomy levels present a significant leap in how AI Leaders interact 
with their technology, since AGI and ASI will put AI Leaders and coaches at an asymmetrical 
information disadvantage concerning how the machines operate and make decisions. 
 
  Following the Degrees of Freedom determination, Figure 4 illustrates major factors 
involved in ensuring the alignment of the human and machine purpose with the leader’s purpose 
to determine the willingness to meet the leader’s expectations. For example, AI agents operate 
with a purpose, whether it is a SLAM algorithm or LLM. They are programmed and designed to 
deliver a workflow. If a leader has a different purpose for the AI agent, then the misalignment of 
purpose will lead to the multi-agent system being modified or a new AI model being created to 
drive the new purpose.  
  
  Several factors should be considered when a coach helps a leader decide on a Machine. 
Does the purpose still align with the Degrees of Freedom of the machine such as the scale, scope 
of responsibilities, and level of autonomy? If the new scope of responsibilities has been added 
through a redesign of the multi-agent system, then the purpose of the machine may have expanded. 
This would necessitate a discussion regarding the possibility of installing new guardrails.  
 
Figure 4 
 
Alignment of Purpose determines Willingness 
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  Alignment of purpose is a critical coaching activity for the hybrid workforce. For example, 
the coach needs to help the AI Leader consider the possibility of bias that an AI Engineer may 
program into the machine. If that bias is not supported by the leader or the company, then the AI 
Leader is not aligned on purpose with the AI Engineer. The ability may be strong, but additional 
steps are needed to build trust. The alignment of purpose determines the degree of trust, which the 
researchers defined as part of the findings as the willingness of the person or machine to meet the 
leader’s expectations. A highly capable machine or AI Engineer with a misaligned purpose and 
high Degrees of Freedom can present a significant threat to a company. 
 
  The Machine Leadership Coaching Model supports Responsible AI by providing a 
framework to consider the expanding responsibilities AI is given and how much autonomy should 
match the responsibilities. Furthermore, it guides the conversation about whether the Degrees of 
Freedom given to the AI Engineer or machine aligns with the purpose. If a fully autonomous AI 
system with significant control over essential business processes is not willing to work within its 
intended purpose, then company leaders must make proactive changes to achieve (A=T=C). 
 
  Coaches will engage different audiences with a slightly varied approach on how to discuss 
(A=T=C) and apply the Machine Leadership Model. For the executive levels, coaches may focus 
on the need for careful consideration of autonomy levels as the pace of AI innovation scales. This 
also includes a discussion about the purpose of the AI tool and how to align it with the goals of the 
company. A key challenge for coaches will be to help organizations find the right equilibrium on 
the Machine Leadership Model to ensure technologies are fully adopted. Figure 5 provides 
examples of adoption tactics that can be employed based on the audience. 
 
Figure 5 
 
Adoption Tactics by Audience 
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Conclusions 
 
The Machine Leadership Model is an innovative framework that helps coaches drive AI adoption 
within organizations. The framework highlights the interconnected relationship between Machine 
Autonomy, Trust, and AI Competencies. The AI Innovation Frontier is the optimal state where the 
three dimensions intersect. This is the place where AI adoption is most efficient for an 
organization. In situations where M(A,T,C) > 0, the imbalance among the three variables 
moderates AI adoption. This means organizations are forced to incur additional costs to ensure AI 
tools are utilized in a responsible manner. Coaches can have a positive impact on this process by 
serving as critical bridges between AI machines, engineering teams, and corporate leaders. The 
coaching model incorporates AI tools while helping individuals and teams build action plans that 
optimize trust for AI adoption. For example, a coach may work with a physician to develop the 
trust and competencies needed to safely utilize a surgical robot.  

 
The findings of the stakeholder interviews, respondent survey, and moderating equation 

suggest that AI adoption can be positively influenced by coaching. This was evidenced by the 
200% penalty that was incurred from the baseline computational costs O(n) that was observed in 
a standard feedforward neural network. The survey presented a wide distribution of scores for 
Machine Autonomy, Trust, and AI Competencies. These results indicate that AI adoption may be 
influenced by factors outside of engineering design. To reduce the impact of these moderating 
variables, coaching models should focus on the level of autonomy that is given to an AI Engineer 
or machine by scale and scope. As part of this, coaches and AI leaders must ensure that trust is 
being established by aligning individual purpose with the goals of the team.  
 
Additional Lines of Inquiry 
 
 This paper acknowledges the data limitations of the moderating equation in calculating 
aggregate AI adoption penalties for entire organizations. The approach would benefit from future 
studies that included a larger sample size of survey respondents, along with a broader portfolio of 
AI tools. The baseline complexity calculation used a simple feed forward neural network. Future 
studies should incorporate domain adapted AI tools to address industry needs such as  healthcare 
robotics, finance LLMs, and energy deep learning algorithms. This will help determine the degree 
of sensitivity k that an AI tool has within a situational context. Separately, the coaching model 
should be incorporated into the analysis to determine the impact of the process along with the 
required time to change. This could include experimental design studies for specific technologies 
or longitudinal studies for entire industries. 
 
Warrant Statement: 
We warrant that given our paper, experiential session, demonstration or panel proposal is 
accepted, we will submit a formally written summary for inclusion in the conference 
proceedings.  We agree that the summary will be typed and single-spaced and will respect the 
maximum number of words expected. We understand that if this summary is not submitted by July 
28, 2025 our presentation will not be included as part of the Columbia Coaching Conference in 
New York City 2025. We also agree that formatting of the document according to conference 
specifications is our responsibility, and we understand that the document will be returned to us if 
it does not meet those specifications. 
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