Principles of Machine Leadership
An integrated framework for leading in the age of AI

David Swanagon and Stephen McIntosh, The Machine Leadership Journal

Abstract: This paper provides an integrated coaching framework for the age of Al The
literature indicates that trust and skill deficiencies limit Al adoption. We introduce a
coaching model that focuses on the key dimensions of Machine Autonomy, Trust, and Al
Competencies, including an equation that helps coaches track performance. The
significance of this model is that it provides coaches with a framework to engage leaders
to better plan, manage, and sustain Al adoption.
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Introduction

In the age of Al, executives will be required to lead machines, lead people that build machines,
and lead organizations that adopt Al. The purpose of this paper is to introduce a model that coaches
can use to drive Al adoption within organizations. The research has focused on the role that
Machine Autonomy, Trust, and Al Competencies have on Al adoption. This includes analyzing
factors that encourage equilibrium between these three dimensions, conditions that create
divergence, and the implications for coaching.

The Machine Leadership Model provides a framework for coaches to optimize Al adoption
by focusing on the balance between Machine Autonomy, Trust, and AI Competencies. Research
indicates that many Al use cases have achieved near linear computational complexity for baseline
operations, traditionally expressed as O(n). This breakthrough in Al engineering has allowed
highly complex models to scale in proportion to the size of their input. However, our findings
suggests that Al models are influenced by the relationship between Machine Autonomy, Trust,
and Al Competencies. In situations where (A=T=C), there is no moderating impact on O(n).
However, any deviations from this creates a positive moderating balance. This results in higher Al
adoption costs that increase based on the degree of imbalance. This level of technical complexity
is important to coaching due to the unique challenges that leaders face integrating machines with
the human workforce such as Responsible Al, data privacy, and employee skill programs.

This paper will provide a review of existing literature, followed by a description of the
Machine Leadership Model, an introduction of the moderating equation, and coaching strategies
for improving Al adoption. The significance of this model is that coaches can help Al engineers
manage Al adoption in a manner that drives (A=T=C). This approach optimizes organizational
performance, further integrates the hybrid workforce, and lowers costs.

Methodology

To develop the Machine Leadership Model, the researchers conducted a mixed methods
exploratory design. The first step consisted of a literature review that evaluated the theories and
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best practices impacting Al adoption. This included analyzing the role that Human Autonomy,
Trust, and Al competencies have on Al leadership. Furthermore, the team examined existing
coaching models and their adaptations for Al leadership.

The researchers completed stakeholder interviews with fifteen Al engineers and corporate
leaders. Separately, the team administered a 75-question survey to twenty participants. The survey
was designed as a pilot instrument. The team investigated existing assessments and Al
performance metrics such as Hogan’s inventories, Korn Ferry’s Leadership Architecture, the BBH
Benchmark, and AGIEval. The researchers determined that unique questions were needed to
directly address the factors influencing Al adoption. Survey data was collected from a variety of
sources including: one AI Researcher, eleven Al Engineers, and eight Corporate leaders.
Respondents were asked to provide their job role, industry experience, and geographic location.
An ipsative ‘forced choice’ method was used for the survey questions. Furthermore, the
researchers utilized the literature to identify a method for measuring baseline AI model
complexity. From this, the team developed a moderating equation that accounts for the impact that
Machine Autonomy, Trust, and AI Competencies have on Al adoption.

Regarding data analysis, the researchers mapped each respondent’s Autonomy, Trust, and
Al Competency level using their ipsative scoring from the survey. Separately, two coders
evaluated the stakeholder interviews. The team determined that a fixed codebook and Kappa inter-
coder reliability calculation was unsuitable for this study. Instead, the focus was on extensive
collaboration. A comparative analysis was used to finalize key themes.

The moderating equation utilized a baseline complexity assumption, expressed as O(n) for
a standard feedforward neural network. The decision to use this neural network was to provide a
simple approach for future studies. The calculation assumed an input layer with 4 nodes, a hidden
layer with 8 nodes, a second hidden layer with 6 nodes, and an output layer with 2 nodes. The total
operations for this baseline model were defined as: 40 (Layer 1) + 54 (Layer 2) + 14 Layer (3) =
108. The 108 represents the FLOPs (Floating-point operations) for a single forward pass, which
Meng et al. (2024) describe as a standard measure of Al computational complexity. The
researchers anchored the moderating equation against O(n) to ensure that coaching strategies were
aligned to Al industry practices for determining computational costs.

The moderating equation was then applied to the survey scores. This resulted in an Al
adoption penalty based on the degree of imbalance, expressed as M(A, T, C) > 0. The calculated
penalty is summarized in Figure 2. Finally, the adjusted scores were applied to a new coaching
model specifically designed to optimize Al adoption. Existing coaching models such as GROW,
OSCAR, and FUEL were reviewed for alignment. However, the researchers determined that a new
framework was needed to specifically achieve (A=T=C).

Theoretical Framework/Literature Review
The researchers focused on five themes to evaluate the factors influencing Al adoption. First, the

team examined existing coaching models to identify best practices and understand how traditional
frameworks have been adapted to Al. Then, a detailed analysis was conducted concerning the role
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of Autonomy, Trust, and AI Competencies in driving organizational performance. Finally, the
team investigated the process used to calculate computational complexity. Combined, the literature
revealed that Autonomy, Trust, and Al Competencies are critical for Al adoption. Furthermore,
that there is a standard method that companies use to calculate computational complexity, which
can be applied to measure Al adoption. Lastly, that the interdisciplinary leadership of coaches can
serve as a bridge between technical and non-technical teams seeking to address Al challenges.

Coaching Models Adapted for AI Leadership

The field of leadership coaching has well established models such as GROW, FUEL, and
OSCAR for addressing employee development and team performance. Passmore et al. (2024)
argued that coaches should adapt these models by becoming technology literate and embracing
digital tools. This includes leveraging data analytics to assist with the Reality, Understand, and
Situation stages of GROW, FUEL, and OSCAR, respectively. Likewise, utilizing Al tools such as
Chatbots and digital platforms to scale services. Al tools can also assist with the development of
action plans and accountability metrics. The researchers argue that Al cannot replace the coaching
process. Instead, it should augment the models through robust data insights, automation, and
process efficiencies. This “Human in the Loop” process requires coaches to develop new
competencies that strengthen data literacy and generative Al knowledge.

A review of existing coaching models identified several themes that were relevant for Al.
The seminal work by Sir John Whitmore (2002) provided the GROW framework. This approach
emphasizes the need for robust goal setting, understanding reality, brainstorming options, and
building action plans. This approach directly applies to Al Engineering tasks such as model
selection, MLOps, and data privacy. Zenger and Stinnett (2010) added to this by introducing the
FUEL model. This framework focuses on conducting quality coaching conversations. This is done
by framing the purpose of the conversation, understanding the situational context, exploring
potential solutions, and laying out action plans. This approach helps Al Engineers address domain
specific challenges impacting models tied to Healthcare, Finance, Energy, and so forth.

The OSCAR model developed by Gilbert and Whittleworth (2009) compliments these
concepts by helping leaders transition from their current state to a desired outcome. The model
follows a structured process that includes identifying a future state, analyzing the situation,
exploring choices, creating action plans, and reviewing results. This approach is useful in building
robust technology roadmaps that help organizations integrate increasingly complex machines.

Methods for Calculating Computational Complexity

NIPS (2014) provided a comprehensive review of the core components that determine
computational complexity for neural networks. This includes forward and backward passes and
the reason these models follow a linear computational cost. Cormen et. al (2009) identified the
expression O(n) as a way of showing the efficiency and scalability of an algorithm. The notation
indicates that runtime and memory usage grows as the input size (n) increases. The literature
indicates that O(n) is an effective way of showing the linear change in computational complexity
as Al models gather more data, perform additional calculations, and integrate with other platforms.
This method was used to support the Machine Leadership Model by establishing a baseline
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computational cost for Al tools that is focused on model design. From this baseline, the Al tool is
moderated by the Machine Autonomy, Trust, and AI Competencies within an organization.

Human Autonomy and Meaning in the Workplace:

According to Deci and Ryan (2000), Self-Determination Theory stipulates that autonomy
and relatedness are critical factors in driving intrinsic motivation. This is important because
employees that experience a sense of autonomy in their work are more likely to be committed
despite experiencing external pressures. This was supported by Hackman and Oldham’s (1976)
Job Characteristics Model, which highlighted that jobs high in autonomy and meaning produce
more effective work outcomes. Wrzesniewski et al. (2003) researched the role that autonomy has
on developing a sense of meaning for employees and its positive effects on satisfaction. Separately,
Pink (2009) noted that creative work which involves non-routine tasks requires a high degree of
autonomy and purpose for employees to perform at high levels. These studies support the role of
human autonomy as a key dimension in driving Al adoption using the Machine Leadership Model.

The Importance of Trust

Dirks (2000) noted that trust is a fundamental component of leadership effectiveness.
Teams that trust their leader’s experience, temperament, and decision-making are more likely to
perform at peak levels. This is supported by Simons (2002), which emphasizes the importance of
leaders behaving in a consistent, predictable, and authentic manner. Mayer et al. (1995) noted the
importance of character traits such as integrity, benevolence, and ability on cultivating trust. These
concepts were further segmented by McAllister (1995) who defined classes of trust such as affect-
based and cognition-based. The former focuses on the importance of building emotional bonds,
while the latter is based on the leader’s perceived competency level. The research also emphasized
that affect and cognition-based trust must be balanced with cooperation. Zaheer et al. (1998)
highlighted that teams which build high degrees of trust are more effective at engaging in
interpersonal communication and cross-collaboration.

The literature indicated that Trust is an essential element of the Machine Leadership Model
due to its influence on Al adoption, especially when balanced with autonomy. The researchers
integrated these studies with the stakeholder interviews and survey results to establish a definition
of trust that applies to the Machine Leadership Model. In terms of Al adoption, the team defines
trust as the belief in the ability and willingness of a human or machine to meet your expectations.

Building AI Skills in Organizations

Manyika et al. (2017) highlighted the on-going and persistent Al skills gap across key
domains such as machine learning, robotics, ethical Al, and data science. The lack of critical skills
has fundamentally impacted the degree of Al adoption across industries. Van Laar et al. (2017)
extended this concept by examining the complexity associated with defining the required skills for
Al professionals. More so than most industries, Al requires engineers to have strong technical
skills, problem solving, and interpersonal traits. Purdy and Daugherty (2017) added to this by
noting the importance of integrating Al skills across business functions. This means technical and
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non-technical professionals must have a fundamental understanding of Al technologies to lead a
workforce comprised of Al agents and humans.

The literature emphasized the importance of learning agility. Wilson et al. (2017) examined
the pace of Al innovation and noted the importance of upskilling and continuous learning on
organizational performance. Companies need to continually reinvest in learning programs to
respond to disruption and align new technologies with their enterprise strategy.

These studies indicated the importance of coaches in supporting the development of Al
Competencies within an organization to ensure that Machine Autonomy is balanced with Trust.
Furthermore, the interdisciplinary leadership of coaches can serve as a bridge between technical
and non-technical teams seeking to address challenges with model design, utilization, and
employee skills. This applies to the Machine Leadership Model as the decisions impacting
Machine Autonomy, Trust, and AI Competencies involve multiple cross-functional stakeholders.

Summary of Major Findings

The research produced two themes. The first theme focused on computational complexity and
moderation, while the second theme addressed the role of coaching in Al adoption. The first theme
stipulates that Al adoption is influenced by the baseline complexity of the model, expressed as
O(n), which is moderated by the interaction between Machine Autonomy, Trust, and Al
Competencies. The second theme suggests that coaching can play a significant role in balancing
the moderating effect of Machine Autonomy, Trust, and Al Competencies, which will help
organizations lower the cost of Al adoption.

The Al Innovation Frontier is the equilibrium where Machine Autonomy, Trust, and Al
Competencies intersect. This is the place where Al tools are utilized in the most efficient manner.
The frontier operates at various stages of model complexity. This allows organizations to utilize a
standard framework for comparing novel inventions to large scale breakthroughs. The frontier
seeks a positive correlation between Machine Autonomy and Trust, which means as autonomy
increases, trust also increases at a rate moderated by AI Competencies.

The moderating function for O(n), which evaluates the equilibrium between Machine
Autonomy, Trust, and Al Competencies is listed below.

Al Adoption = Oinfluenced(n) = (1+ M(A,T,C)) * O(n)
Moderating Function = M(A,T,C) =k * ((A-C)2 + (T-C)*> +H(A-T)?)

The point where Machine Autonomy, Trust, and AI Competencies intersect is referred to
as The AI Innovation Frontier. The reason is because there is no moderating influence over the
general performance of an Al tool, expressed as O(n). The moderating equation indicates that as
Al tools scale, their adoption rate is influenced by the interaction between these variables. In
situations where the moderating variables are at equilibrium, the formula is (A=T=C). The
moderator M quantifies the degree of deviation from this state of equilibrium.
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Deviations from the state of equilibrium create a positive moderating balance, expressed
as M(A,T,C) > 0. This scenario incorporates a positive scaling constant k, alongside the sum of
squared differences between the three elements. This is reflected using the following formula:
M(A,T,C) =k * ((A-C)> + (T-C) 2 + (A-T) ). The k is a scaling constant that determines the degree
of sensitivity towards O(n) that results from deviations to the equilibrium. The first term (A-C)?
measures the difference between Machine Autonomy and Al Competencies. The second term (T-
C)? measures the difference between Trust and AI Competencies. The third term (A-T)? measures
the difference between Machine Autonomy and Trust.

Proceeding to Al adoption, the formula Oinfluenced(n) = (1+ M(A,T,C)) * O(n) can be
analyzed as O(n) represents the standard computational complexity of an Al model and stipulates
the linear growth of a model as the input size increases. Cormen et. al (2009) identified this as a
common measure showing the processing time and memory that change in proportion to the size
of the inputs. When Al tools are out of balance, the baseline computational complexity O(n) is
moderated by a number greater than 0, expressed as M(A,T,C) > 0. This results in a penalty that
increases proportionally based on the degree of imbalance.

The research team utilized a baseline complexity calculation for a standard feedforward
neural network, expressed as O(n). The total operations for this baseline model were defined as:
40 (Layer 1) + 54 (Layer 2) + 14 Layer (3) = 108 FLOPs. After this, respondent survey results
were added to the moderating equation to determine if a computational penalty was needed. The
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results are listed in Figure 2. The findings indicate that organizations with these model scores
would incur a 200% penalty on their Al adoption programs.

Figure 2
Al Adoption Penalty - Summary of Respondent Survey Scores (Respondents = 20)

Baseline Autonomy Trust Competencies M(A,T,C) Penalty
| 108 FLOPs | 3 | 2 | 2 | 2 | 324 FLOPs |

Using the survey respondent pool, the average score for Machine Autonomy was 3, Trust
2, and Al Competencies 2. The baseline complexity = 108 FLOPs. The new adjusted FLOPs
incorporating this lack of equilibrium is 324, which represents a 200% increase in complexity.
These are Al adoption costs that are incremental to the model’s engineering design, which
organizations incur to build trust and employee skills in new Al tools. For example, the penalty
may require organizations to slow down deployment, incur higher training costs, or add
Responsible AI monitoring platforms to achieve equilibrium.

M(3,2, 1) =k * ((3-2)*+ (2-2)° + (3-2)) = 2
Oinfluenced(n) = (1 + 2) * 108 = 324 FLOPs (+200%)

The findings suggest that coaches can directly impact the moderating function. For
example, in situations where an Al tool has low Trust and high Autonomy (T < A), organizations
may need to engage in significant monitoring to ensure issues such as Responsible Al and data
privacy are mitigated. Coaching can reduce these issues by working with engineers and corporate
stakeholders to improve organization trust. This could be achieved by using the Machine
Leadership Model and coaching tactics listed in this paper.

Comparatively, when Trust is high and AI Competencies are low (T > C), additional
protocols may be needed to manage data ingestion errors, input validation, and cyber security
breaches. In this situation, engineering teams would need to ensure that employees developed
baseline skills in threat prevention. An example would be a phishing email program. Coaches
could support this program by developing action plans for teams and individual leaders to ensure
that trust and skill programs were implemented. The Al adoption formula could be used to check
if the moderating variables have reached equilibrium, and what additional steps were needed.

Machine Leadership Coaching Model

Current models such as GROW, OSCAR, and FUEL focus on coaching conversations that
emphasize how the leaders focus on attaining goals, motivate and lead their teams, and navigate
the complexity of change. These models are effective in the context of leaders leading people, but
leading an AI machine adds additional complexity. To effectively coach Al leaders, a new
coaching model is required that accounts for the Machine Autonomy and purpose of Al tools.

Al adoption is highly dependent upon the Trust created between the leader and the hybrid
workforce. The research team developed an applied definition of Trust stipulating, “Trust is the
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belief in the ability and willingness of a human or machine to meet your expectations.” In the
hybrid workforce context, we can look at the variables of “ability” and “willingness” as being
applicable to both humans and machines.

The term “ability” is defined as the breadth of responsibility given to successfully manage
a use case at both the scope and scale expected. According to Deloitte (2024), autonomy is the
power to act and make decisions independently. This concept can be extended to agentic Al. For
these platforms, the goals are set by humans, but the agents determine how to execute them. Thus,
each Al tool has a level of autonomy, which is described in Figure 1 by six levels. Levels three
through six are coaching priorities because they indicate the Al tool is actively participating in the
decision-making process from creating data driven criteria to being fully autonomous.

Figure 3 illustrates how Scope (SP) and Scale (SL) interact to guide the decision on establishing
the right autonomy level given to the Al Engineer or Machine. The combination of the two is the
Breadth of Responsibility. When the Level of Autonomy is decided, then this coaching variable
becomes the Degrees of Freedom that determines Ability. The ability of the engineer or machine
to accomplish an increased scope or higher scale of work complexity leads to increased risk.

Therefore, the Breadth of Responsibility accounts for the progress through significant
expansions in Scope as moving from SP1 to SP2 and SP3, while significant Scale increases are
noted as SL1, SL2, and SL3. The Breadth of Responsibility can iterate across many levels until
the underlying technology changes to the point a new Degrees of Freedom chart should be created.

Figure 3

Degrees of Freedom Chart - Levels of Autonomy by Breadth of Responsibility

Levels of Autonomy

e

SP3 SP2 SP1 SL1 SL2 SL3

Breadth of Responsibility (use cases) in Scope (SP1, SP2, SP3)
& Scale (SL1, SL2, SL3) which increases complexity
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Coaches working with AI Leaders will first ask the leaders to complete the Machine
Leadership Model shown in Figure 1, while using the moderating equation in Figure 2 to determine
the current Al adoption trends. Once an initial score is established, a discussion around the Breadth
of Responsibility of team members (both humans and machines) and at what level of autonomy
and skillset should be targeted. The objective being to achieve (A=T=C).

As the pace of Al innovation continues to scale, two more levels of autonomy will be
added: Level 7 for Artificial General Intelligence (AGI) and Level 8 for Artificial Super
Intelligence (ASI). These autonomy levels present a significant leap in how Al Leaders interact
with their technology, since AGI and ASI will put Al Leaders and coaches at an asymmetrical
information disadvantage concerning how the machines operate and make decisions.

Following the Degrees of Freedom determination, Figure 4 illustrates major factors
involved in ensuring the alignment of the human and machine purpose with the leader’s purpose
to determine the willingness to meet the leader’s expectations. For example, Al agents operate
with a purpose, whether it is a SLAM algorithm or LLM. They are programmed and designed to
deliver a workflow. If a leader has a different purpose for the Al agent, then the misalignment of
purpose will lead to the multi-agent system being modified or a new Al model being created to
drive the new purpose.

Several factors should be considered when a coach helps a leader decide on a Machine.
Does the purpose still align with the Degrees of Freedom of the machine such as the scale, scope
of responsibilities, and level of autonomy? If the new scope of responsibilities has been added
through a redesign of the multi-agent system, then the purpose of the machine may have expanded.
This would necessitate a discussion regarding the possibility of installing new guardrails.

Figure 4

Alignment of Purpose determines Willingness
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Alignment of purpose is a critical coaching activity for the hybrid workforce. For example,
the coach needs to help the Al Leader consider the possibility of bias that an Al Engineer may
program into the machine. If that bias is not supported by the leader or the company, then the Al
Leader is not aligned on purpose with the Al Engineer. The ability may be strong, but additional
steps are needed to build trust. The alignment of purpose determines the degree of trust, which the
researchers defined as part of the findings as the willingness of the person or machine to meet the
leader’s expectations. A highly capable machine or Al Engineer with a misaligned purpose and
high Degrees of Freedom can present a significant threat to a company.

The Machine Leadership Coaching Model supports Responsible Al by providing a
framework to consider the expanding responsibilities Al is given and how much autonomy should
match the responsibilities. Furthermore, it guides the conversation about whether the Degrees of
Freedom given to the Al Engineer or machine aligns with the purpose. If a fully autonomous Al
system with significant control over essential business processes is not willing to work within its
intended purpose, then company leaders must make proactive changes to achieve (A=T=C).

Coaches will engage different audiences with a slightly varied approach on how to discuss
(A=T=C) and apply the Machine Leadership Model. For the executive levels, coaches may focus
on the need for careful consideration of autonomy levels as the pace of Al innovation scales. This
also includes a discussion about the purpose of the Al tool and how to align it with the goals of the
company. A key challenge for coaches will be to help organizations find the right equilibrium on
the Machine Leadership Model to ensure technologies are fully adopted. Figure 5 provides
examples of adoption tactics that can be employed based on the audience.

Figure 5

Adoption Tactics by Audience

Audience Autonomy Tactics Trust Tactics
Executives Use Case Discussions Evaluation and Monitoring
Scenario Planning Practice Labs
Al Council Reverse Mentoring
Al Workforce Bessemer Scale Review Data Validation
(AI Builders) Risk Analysis and Testing Al Transparency
Iterative Development Human-centered Criteria
General Workforce Pilot and Control Groups Positive Experiences
(Internal Al Users) Quality Assurance Testing Learning Communities
Systems Mapping Al Competency Building
Customers/ Clients Incentives Human-in-the-Loop
(External AI Users) Expanding Scope / Features Al Success Stories
Ethical Al Disclosures Customer Profiling / Memory
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Conclusions

The Machine Leadership Model is an innovative framework that helps coaches drive Al adoption
within organizations. The framework highlights the interconnected relationship between Machine
Autonomy, Trust, and AI Competencies. The Al Innovation Frontier is the optimal state where the
three dimensions intersect. This is the place where Al adoption is most efficient for an
organization. In situations where M(A,T,C) > 0, the imbalance among the three variables
moderates Al adoption. This means organizations are forced to incur additional costs to ensure Al
tools are utilized in a responsible manner. Coaches can have a positive impact on this process by
serving as critical bridges between Al machines, engineering teams, and corporate leaders. The
coaching model incorporates Al tools while helping individuals and teams build action plans that
optimize trust for Al adoption. For example, a coach may work with a physician to develop the
trust and competencies needed to safely utilize a surgical robot.

The findings of the stakeholder interviews, respondent survey, and moderating equation
suggest that Al adoption can be positively influenced by coaching. This was evidenced by the
200% penalty that was incurred from the baseline computational costs O(n) that was observed in
a standard feedforward neural network. The survey presented a wide distribution of scores for
Machine Autonomy, Trust, and AI Competencies. These results indicate that Al adoption may be
influenced by factors outside of engineering design. To reduce the impact of these moderating
variables, coaching models should focus on the level of autonomy that is given to an Al Engineer
or machine by scale and scope. As part of this, coaches and Al leaders must ensure that trust is
being established by aligning individual purpose with the goals of the team.

Additional Lines of Inquiry

This paper acknowledges the data limitations of the moderating equation in calculating
aggregate Al adoption penalties for entire organizations. The approach would benefit from future
studies that included a larger sample size of survey respondents, along with a broader portfolio of
Al tools. The baseline complexity calculation used a simple feed forward neural network. Future
studies should incorporate domain adapted Al tools to address industry needs such as healthcare
robotics, finance LLMs, and energy deep learning algorithms. This will help determine the degree
of sensitivity k that an Al tool has within a situational context. Separately, the coaching model
should be incorporated into the analysis to determine the impact of the process along with the
required time to change. This could include experimental design studies for specific technologies
or longitudinal studies for entire industries.

Warrant Statement:

We warrant that given our paper, experiential session, demonstration or panel proposal is
accepted, we will submit a formally written summary for inclusion in the conference
proceedings. We agree that the summary will be typed and single-spaced and will respect the
maximum number of words expected. We understand that if this summary is not submitted by July
28, 2025 our presentation will not be included as part of the Columbia Coaching Conference in
New York City 2025. We also agree that formatting of the document according to conference
specifications is our responsibility, and we understand that the document will be returned to us if
it does not meet those specifications.
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